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The nacelles of modern aeroengines are constantly increasing in size. Thus, engine air-loads are
becoming more powerful and their importance for the aeroelastic stability is becoming more
significant. The principal goal of this study is to answer the question of how unsteady airloads
vary while shifting to transonic Mach numbers. The investigations are carried out by applying
a finite volume Euler method to a harmonically oscillating annular wing. The results show that
transonic effects in the case of an annular wing are essentially weaker than in the case of an
airfoil. The order of magnitude of the variations is around 10%. Possible consequences for the
aeroelastic stability are examined with the example of an elastically mounted annular wing in
transonic flow. The shifts of the stability curves also remain within a range of 10%. In addition,
an actuator disk method, which is frequently used for the simulation of the fan jet, is expanded
in such a way that unsteady flows can be treated. Some unsteady air-loads are strongly
dependent on the pressure jump across the fan. © 1999 Academic Press

1. INTRODUCTION
1.1. OUTLINE

THE BYPASS RATIOS OF MODERN AEROENGINES are within a range of 4 to 6. Manufactures are on
the verge of developing aeroengines having bypass ratios of 10 to 20. The corresponding
nacelles take on enormous dimensions, compared to earlier generations of engines. Accord-
ingly, engine air-loads are becoming more powerful and their importance for the aeroelastic
stability of the aeroplane is increasing. Thus, it is necessary to become more familiar
with the unsteady aerodynamics of an oscillating nacelle. In the present study, the acrody-
namics of the annular wing is investigated as a first step towards more complete configura-
tions.

From airfoil theory, it is a well-known fact that unsteady air-loads can vary greatly while
shifting to transonic Mach numbers. The principal goal of this study is to examine whether
the annular wing exhibits the same high sensitivity of the air-loads to Mach number
variations.

All numerical calculations have been done utilizing Euler’s equations. This implies that
the results are inexact in the flow regime where separation occurs. However, from an
aeroelastic point of view, the costs of a complete 3-D Navier—Stokes solution still seem too
high because of the high number of reduced frequencies and Mach numbers that have to be
included in an aeroelastic stability survey. Taking viscous effects into account is left to
future investigations.
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1.2. DEFINITION
The annular wing is assumed to be stiff. It can exhibit pitch oscillations,

o(t) = oo cos(wt), (1)
or heave oscillations in the z-direction with amplitude z,,

z(t) = zy cos(wt). (2)

The geometrical situation is pictured in Figure 1.
This motion causes a normal force Fy and a moment M about the middle axis A. The
force coefficient ¢y and c), are defined as follows:

Fy M

- N - . 3.4
1,,U2DL" ™~ 1, U2DL” 4

CN
0o and U, are the density and velocity of the fluid far away from the annular wing; L and
D are the length and the diameter of the annular wing, respectively.
If the amplitudes are small, a harmonic time dependence of cy(t) and cy,(t) is a good
approximation:

cy(t) = cy cos(wt) — cy sin(wt), (5)
cu(t) = ¢y cos(wt) — ¢y sin(wt). (6)

The unsteady air-load coefficients cy, ¢y, ¢y and ¢y, are usually denoted as the real and
imaginary parts of the normal force and moment; the prime means the real and the
double-prime the imaginary part, respectively. For small oscillations, these coefficients are
proportional to the amplitude of the oscillation. Therefore, the results are usually expressed
in the differential form

5CN/M L 5CN/M
CN/M,o = I CN/M,z = E oz’ (7,8)
0 0

In this study, o, is always 1° and z,/L equals 0-01.
The most important parameters are the aspect ratio 4 = D/L; the reduced frequency
w* = wL/U,; and the Mach number Ma,,.

1.3. STATE OF THE RESEARCH

Steady calculations have been done by several authors for potential flow (Weissinger 1956)
or solving the complete Euler or Navier—Stokes equations (e.g. Ronzheimer 1989; Rudnik
1991; Hirose et al. 1991; Bolms & Schwamborn 1994).

Unsteady calculations have been made only by a few authors. These calculations utilized
linear approximations and, therefore, could not treat transonic flows. The reason for this
lies in the great computational effort needed to solve the full nonlinear equations. The
required computer performance has been obtainable only since the last decade. Some
results of these linear calculations are outlined in this section.

First, some steady results of the linearized potential theory are presented. An expanded
lifting line theory (Weissinger 1956) yields this approximate expression for the normal force
in incompressible flow:

An’a
cy = .
M7 A+ /2 + tan " 1(1:2/4)

©)
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Figure 1. Oscillating annular wing (cross-section).

Applying the similarity rules for compressible flow [e.g. Schlichting & Truckenbrodt
(1969)], we have

B Ao
NTBA+ /2 + tan (12/(AP))°

f=./1-Md. (11)

Thus, for A small enough, the Mach number dependence of the normal force is much
weaker than in the case of the high aspect ratio airfoil, where the loads scale with 1/f. In the
limit of A = 0, they are completely independent of the Mach number. This result is the same
as obtained by slender-body theory. The latter says that the lift should be independent of
the Mach number also in transonic flow. In this paper, it shall be tested whether or not this
is also true for an annular wing with 4 = 1.

The unsteady results can be summarized as follows. Potential flow theory yields the
following lowest-order dependencies (Laschka 1964; Katzer 1989) for the unsteady air-loads
in incompressible flow (Ma,, = 0):

(10)

with

CNaC A, R, Aw*, Cyaoc A, Chyaoc — A, Cy.oc Aw*?, .. o0 —Aw¥,
cu.-~0 and cy,oc — Ao*.

In order to compute the influence of the Mach number in subsonic flow, Angelini et al.
(1974) used a doublet-lattice method. Their results indicate a slight increase of the unsteady

load coefficients with the Mach number. A panel method, applied by Send (1989), yielded
the same behaviour.

2. FUNDAMENTAL EQUATIONS

The fluid is assumed to be ideal. Therefore, the viscous terms can be neglected and the flow
can be described by Euler’s equations
oq of Jdg ¢oh

xtata (12)
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The conservative variables q and the flux vectors f, g, and h are defined as follows:

P pu
pu pu® +p
q=45pv, f= puv s
pow puw
pE pul
pU pw
puv puw
g=(pv>+p), h={ pow (13)
pow pw? +p
ovl owl

p is the fluid density, p the static pressure, and (u, v, w) = u are the three components of the
velocity in the x-, y- and z-direction. E is the total energy and I the total enthalpy per unit
mass,

1 p 1,
= =+ = 14
K_1p+2u, (14)

kK p 1,
I= —+-u’. 15
K—1p+2u (13

Kk is the adiabatic coefficient, which equals 7/5 for two-atom gases.

By quasilinear transformations, Euler’s equations can be transformed into the character-
istic form. This is needed in order to formulate the boundary conditions at the fan inlet and
outlet.

0
<8t + u-V)sl =0, (16)
0 1
—+u-V)s; +—ny -Vp =0, (17)
ot 0
0 I
—4+u-V]s3+—n3 -Vp=0, (13)
ot 0
0
a-l—(u—i—an)'V S4 + at(t-V)u =0, (19)
0
E#—(u—an)-V s5 + at(t-V)u =0, (20)

with ny = (— n., 0,n,), and n3 = (n,, —n,,0,), a is the speed of sound. The abbreviation
t(t-V) means t;(t; - V) + t,(t, - V), where n, t; and t, form a system of orthonormal basis

vectors. The variations of the characteristic variables s; s are
1
dsy = 0p — ;519, (21)
8s, =ni-du, Js; =nz-ou, (22,23)

1 1
0S4 =n-0u +—0op, 0ss= —n-ou-+—~ap. (24, 25)
pa pa
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3. NUMERICAL METHODS

In this section, the numerical methods are introduced briefly. More information about the
methods and the validation runs can be found in Knipfer (1995).

The five equations (12) are solved approximately utilizing a finite-volume algorithm.
A regular mesh is applied to the physical space {x, y, z, t}. The nodes are numbered by
integers &, n and o, and the equations are solved in the transformed space {&, , g, t}. The
Euler solver in a Flux Vector Splitting algorithm according to van Leer. The solution
algorithm is

- At(fg:n,a' - fg——l,n,u' + fé_-%- 1,n,0 — fé_,n,o'
+ ggn,(r - ggnfl,rr + g;yﬂrl,a - gg,n,(r
+hgn,a_hgn,a’—1 +h§_,11,o'+1 _hé_,n,a')- (26)

The split fluxes f* and f~ are defined as follows:

1
Ex — U, iZa+u
— K+2a
£* = DIVeles {&—"==+0. 27)
s —u, +2a
L,—————+w
K
£.F
where
1
IVé| =&+ &+ &, fu = izpa(M;il)z, (28,29)
—(c —Du? +2(k — Duya + 2a> 1 s —u, 2
for =gy | D £ 20 Qe 207 L, ey g T2 (5
k- —1 2 K
M:=u,/a, un=§xu+3yv+§zw+§,, (31, 32)
(gxs éy?ézyit) =@(éxa 6)}: ézyét)y D= |a(x7 Vs Z)/a(éa n, G)| (335 34)

The definition of the split fluxes in the #- and o-directions can be obtained by replacing
& with 5 and o.

The above form (27) of the split fluxes f* is to be used only if | M,]| is less or equal 1.
Otherwise, f* =f,f~ =0 for M: > 1, or ff =0,f =ffor M < — 1. More details on the
method can be found, for instance, in Parpia (1988).

In addition, utilizing the MUSCL-principle (van Leer 1979), variable extrapolation is
applied in order to achieve better spatial accuracy. The boundary conditions at the far field
are obtained using one-dimensional approximations of the characteristic equations
(Riemann variables). On the wing surface, a combination of extrapolations and the normal
momentum equation is applied (Hirsch 1990).

For our computations, we use an annular wing which is created by rotating a NACA6512
profile. D/L equals 1, where D is measured at the foremost edge of the profile. The mesh, for
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which an H-topology is chosen, is generated according to the method of Steger & Sorensen
(Carstens 1988). There are 116 cells in the ¢-direction, 50 of them upon the profile, and 43
cells in the radial direction, 13 of them inside of the annular wing. The circumference is
subdivided into 24 segments.

4. RESULTS
4.1. Steapy FLow

All calculations in this section are done with the rotated NACA 6512 annular wing
(D/L = 1) described in the foregoing. Figure 2 shows iso-Machlines for a typical transonic
case at Ma,, = 0-8. The diameter of the duct in the fore part of the nacelle increases in the
downstream direction which avoids an acceleration of the flow and the occurrence of
possible shock waves on account of nozzle effects. The Mach number directly in front of the
shock on the outer side equals 1-32.

At first, the lift polar is considered, i.e. the lift as a function of the angle of attack . In
Figure 3, the annular wing is compared with a 2-D NACAO0012 profile at the transonic
Mach number of 0-8. The NACAO0O012 profile was chosen instead of the NACA6512 for this
comparison, because the former is symmetric like the annular wing. A 2-D NACAG6512
profile is cambered and thus has a nonzero lift at an angle of attack of 0°, in contrast to the
annular wing. From Figure 3, it can be seen that the lift is linearly dependent on o for the
annular wing. This remains valid even at higher values of o, where the 2-D airfoil already

Figure 2. Isomachlines at Ma,, = 0-8, AMa = 0-05.
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Figure 3. Lift as a function of the angle of attack « for the annular wing (solid) and the NACA0012-profile
(dotted) at Ma,, = 0-8 in steady flow.

shows nonlinear effects. This distinct behaviour can be explained by the channeling
effect of the annular wing being responsible for a reduction in the effective angle of attack.
It is so small that the lift is linearly dependent on the angle of attack even at higher values
of .

The next parameter to be investigated is the influence of compressibility. Figure 4 shows
the steady lift and moment coefficient as a function of Ma,,. The Mach number dependence
is weak and especially less significant than in the case of the high-aspect-ratio airfoil. This
result is already predicted by potential theory, but is also valid in the transonic flow
regime, where linearized potential theory is no longer applicable. A similar behaviour is
known from slender-body theory, where the steady lift remains independent of compres-
sibility effects from Ma,, = 0 to supersonic conditions. According to Prandtl et al. 1990,
slender-body theory yields good results for (1 — Ma,,)D?/L? < 0-25. For the annular wing
with D/L = 1, this is fulfilled only for Mach numbers higher than 0-87, but, obviously,
slender-body theory seems to be a good approximation also for lower Mach numbers.

Thus, steady air-loads vary significantly less for annular wings with D/L < 1 than for
airfoil profiles. In the next section, the question of whether or not this is also true in
unsteady flows will be examined.

4.2. UNSTEADY FLOW

The frequencies investigated are w* = 0-25, 0-5, 0-75, and 1. Higher frequencies practically
never occur and the air-loads for 0 < w* < 0-25 can be found by inter polating using the
steady air-loads. A typical example of a medium range transport acroplane could be
® =10m/s~ ! and L = 3 m. This corresponds at U, = 200 m/s to a reduced frequency of
0-15. For smaller aeroplanes, the reduced frequencies can be higher, because of the higher
frequencies of the structural oscillation modes.

Figure 5 shows the unsteady air-loads in the transonic regime for pitch oscillations. For
w* < 05, transonic effects cannot be observed. The real parts correspond to the static
derivatives and the imaginary parts remain small. At 0-5 < w* < 1, the real parts of the lift
coefficient exhibit a slight increase followed by a decrease, while the imaginary parts
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Figure 4. Lift and moment as a function of Ma,, for the annular wing in steady flow.

decrease when shifting to transonic Mach numbers. The moment coefficients do not vary
significantly.

In Figure 6, the results of the computations are shown for heave oscillations. Again, for
w* < 0-5, transonic effects practically cannot be observed. At higher values of w*, all
derivatives show minor variations.

Summarizing, steady and unsteady air-loads, acting on an annular wing with D/L < 1 in
transonic flow, do not differ significantly from their subsonic values. That means, that they
behave more benignly than in the case of an airfoil. This can be explained partly by the fact
that annular wings can be treated like slender bodies; thus, the compressibility effects can be
neglected in the lowest order. Another important point is the channeling effect of the
annular wing, which reduces the effective angle of attack.

5. AEROELASTIC STABILITY

The air-loads, calculated in the preceding section, do not vary dramatically while shifting to
transonic Mach numbers. Nevertheless, the stability effects of these changes will be investi-
gated, because it is known that, under unfavourable circumstances, aeroelastic stability can
be sensitive to several parameter variations.

The aeroelastic model is pictured in Figure 7. Two degrees of freedom are allowed,
namely heave and pitch oscillations. The equations of motion are

mh + S,6 4+ Dyh + K,h = — A(1), (35)
S,h+ 1,6 + D,a + Ko = M(1), (36)

where m is the total mass, S, = mslis the static unbalance, I, is the moment of inertia, D, and
D, are damping coeflicients, and K, and K, are the spring constants. If the air-loads 4 and
M are not explicitly dependent on time and linear functions of h, h, o, and d, this system of
equations has solutions of the form
{hl}em’ (37)
%q

where 4, hy, and o, are complex. It is assumed that the system is not degenerate.
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Figure 5. Unsteady load coefficients as a function of Ma,, for pitch oscillations :—, real parts; ---, imaginary parts.

The motion is damped if .#2(4) is positive and sustained if negative. Thus, the stability
boundary is defined by .#2(4) = 0, where the solution oscillates harmonically with constant
amplitude. At these points, lift and moment can be calculated utilizing the load coefficients
from the preceding section:

A o [(cy,n + ich )y + (Ci,o + ich )31 ]e™, (38)
M oc [(ch,n + ichr, )iy + (Chr,a + iChr 2)E 1€, (39)

The bar signals that these formulae refer to oscillations around the middle axis B. The
transformation to oscillations around the axis D is given by

h=h—c¢lo, M=M —c¢lA, (40, 41)
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Figure 6. Unsteady load coefficients as a function of Ma,, for heave oscillations :—, real parts; ---, imaginary
parts.

where ¢ is the distance of the torsion axis D from the middle axis B. For simplicity damping

is assumed to have the form

K 7, K
— B2 and D, =122 (42)
w w

D,

with constant y, and 7,.
Then, the system of equations (35) and (36) yields the following determining equation for A:

I h
Ell%_}_Elzo(:O’ E217+E220(:0, (43744)
with

2
a

2
i, . 1
Eq4 :/l<1 _an 72 (a +1Vh)>_a),2kaa (45)
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Figure 7. Two-degree-of-freedom (pitch/heave) aeroelastic model.

Eir =X — —5 (ky — eky), (46)
Xa U &

E21 - 2 + ,2<ma + 2ka>7 (47)
ra Wz

E,, = D <1 22 (1 + 1/&))

1 kb 82
+w,2<mb+<2—m,}>—2k0>. (48)

In the aeroelastic literature, all mechanical quantities usually are referred to [ = L/2. This
also applies for the reduced frequency. In order to avoid confusion, it is therefore denoted
by ' in this section; o' = wl/U,, wj = K,/m, o} =K,/I,, n=m/mpDI?, x,=S,/ml,
rozz = Io(/MIZa kat = - (ciN,z + icxl,z): kb = c;\’,m + Cx’,a» m, = — (C}\/l,z + icxl,z)a my = c}\/l,az +
icys ». The parameters were chosen as x, = 02, u = 25, r; = 0:5 and y,, = y, = 0-05. These
are taken from Forsching (1991) and are typical for a lightweight annular wing.
Equation (43) has nontrivial solutions only if E;{ E,, — E{,E,; = 0. By this condition
e:= w}/2* can be obtained easily as a root of a quadratic complex equation. The flutter
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Figure 8. Reduced flutter speed U* as a function of the frequency ratio at subsonic and transonic Mach
numbers for ¢ = — 0-5.

points are found by varying o’ and marking the points where .#(1/,/e) = 0. Then A = wy
is real and can be used to calculate the reduced flutter speed,

Uy = Ue = 1/7\/;. (49)
w,l o'

A typical stability diagram is plotted in Figure 8 for ¢ = — 0-5. The flutter speed U7} is
sketched against the frequency ratio w,/w, for a subsonic Mach number of 0-6 and
transonic Mach numbers 0-75 and 0-85. The unstable region is above the stability curve. The
curves imply that for w,/w, < 1 transonic effects tend to destabilize the motion; for higher
ratios, they have a stabilizing character. This statement does not hold globally, but refers
only to this combination of parameters. At other values, the consequences of the transonic
effects can be different. However, systematic parameter studies are not necessary because, in
the case of a pylon-mounted engine, pure nacelle flutter cannot occur. This is because the
centre of gravity normally lies far ahead of the flexure axis. Therefore, the aim of the present
flutter calculation is to demonstrate that transonic effects at the annular wing are princi-
pally able to destabilize the system. This statement is of special interest, because the
combined airfoil-nacelle modes are essential for some practical flutter cases.

6. JET SIMULATION

The simulation of the jet is an important step on the way towards a realistic engine model.
For Euler calculations, this can be achieved by using an actuator disk method [see e.g.
Rudnik (1991), Hirose et al. (1991) or Chen et al. (1983)]. In this study, this is implemented
using a combination of the characteristic equations (16)—(21) and fixed boundary
conditions. This steady method is expanded in such a way that unsteady flows can be
treated.

The coordinates of the annular wing used for the jet simulation can be found in Knipfer
(1995). The profile is thinner and less cambered than the NACA6512 profile used in the
preceding sections; D/L equals 0-7. Ma, is kept at 0-6 in order to avoid transonic
effects.
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6.1. STEADY FLOW

At the fan inlet, the characteristic equation (20) which describes an upstream running wave,
is replaced by the condition of constant mass flow density jg; jp is set to 60% of the mass
flow density at infinity. This value is slightly higher than the average value for the pure
flow-through nacelle (56%) in order to take account of the working fan. At the fan outlet,
equations (16)—(19), which describe waves running in the downstream direction, are re-
placed by the conditions of constant mass flow jr, total pressure ratio p, = po_tan/Po. - and
flow directions 0; and 0,; 0, and 0, are respectively the polar and the azimuthal angle
of the velocity vector, both set to zero. p, is varied from 1 (no thrust) to 1-3. Figure 9
shows iso-Machlines for p, = 1-3. The shear layer indicating the jet boundary can be
clearly identified. It is widened in the downstream direction on account of numerical
viscosity.

6.2. UNSTEADY FLOW

The method of fixed boundary conditions as described in the foregoing is not appropriate
for unsteady flow because the front and the rear sides of the fan are completely decoupled.
Thus, for unsteady flow, waves must be allowed to cross the actuator disk. In the following,
two methods are introduced and tested.

In both cases, the simulation starts with a converged steady solution. In order to
determine the unknown variations of the 10 variables 6, ¢ronts Ortront> OU/V/Weront aNd 0 rears
O prear> OU/U/Wreqr, 10 equations are needed. Five of them are the characteristic equations for
the incoming waves. They yield four relations for the variables on the foreside of the fan and
one for the backside. The two methods differ in the manner of obtaining the missing
equations. Method 1 is based on the assumption that incoming waves cross the fan
undisturbed, i.e., the variations of the characteristic variables are equal fore and aft of the
actuator disk. This can formally be expressed by

[4s:]=0; (50)

Ma=0.6

Figure 9. Isomachlines for Ma,, = 06 and p, = 1-3 (4Ma,, = 0-025).
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Figure 10. Unsteady normal and moment coefficients as a function of total pressure jump p, for pitch
oscillations :——, real parts; ---, imaginary parts.

[ ] means the difference between the values at the front part and at the backside of the fan.
In method 2, it is demanded that the jump relations across the fan are conserved:

0 o
—0, Srpu?+p]= 1,52

0
— I1=0.
ot 6t[pu]

0
E [puU] = 09 [qu] = 09 (539 54a 55)

The variables do not vary greatly from one integration step to the next, so these equations
can be used in their linearized form.
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The computations yield the result that for heave oscillations unsteady air-loads cy/cyy. -
are almost completely independent of the jet strength p, (not shown). This can be explained
by the fact that there is no motion of the annular wing normal to the pressure jump at the
fan. For pitch oscillations, the results of the two methods are plotted in Figure 10. Real
parts of the lift become significantly stronger, which usually corresponds to less stable
aeroelastic behaviour. With the exception of the real parts of the moment, the results for
both methods are almost identical. No simple explanation for this distinct behaviour could
be found. However, it has to be kept in mind that the absolute values of the moments are
relatively small.

Other methods can be defined as hybrids between the two methods. Furthermore,
reflection or transmission coefficients can be introduced. In order to calibrate these
methods, detailed experimental results are needed which answer the question of what
happens to a wave crossing a working fan.

7. SUMMARY

The main issue investigated in this paper has been the influence of nonviscous transonic
flow on unsteady load coefficients, acting on an oscillating annular wing with aspect ratio
D/L = 1.

The steady load coefficients do not vary with the Mach number, i.e., transonic effects do
not occur. Thus, the annular wing with D/L = 1 can still be regarded as a slender body. The
unsteady load coefficients do not depend on the Mach number for reduced frequencies of
less than 0.5. At higher frequencies, transonic effects remain in a range of 10%. The relative
shifts of the stability curves have the same order of magnitude; this is only valid for the
isolated annular wing. If the pylon and the airfoil are taken into account, it is known by
experiments that shocks are able to cause severe stability problems for the system wing-
pylon-engine. Thus, a next step would be to include wing and pylon and to take into
account the viscous effects.

In addition, two methods for an unsteady jet simulation have been developed. Both
methods yield almost the same dependence of the unsteady air-loads on the pressure jump.
In order to refine the methods, wind tunnel experiments are needed.
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